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Abstract.

The paper analyzes in detail the problem of various plate models,
properties of their solution and the question how well these models
approximate the 3-dimensional formulation. The boundary layer and corner
singularities of the solution are analyzed. A hierarchy of the models
converging to the 3-dimensional solution is constructed. The detailed
numerical computations show various basic aspects of plate modeling in a

concrete setting.

Key Words: Plates, Kirchhoff model, Reissner-Mindlin model, plate

paradox, corner singularities

1. Introduction.

The plate and shells are basic elements in structural mechanics.
Historically much attention has been given to the derivation of plate and
shell models which lead to the different solution depending on the model
used; see e.g. [1] for a survey. The derivation of a model is typically
based on various mechanical considerations and principles. Only in 1959 in
[2] was the first rigorous proof of the relation between the
three-dimensional solution and the plate model given.

Many papers then had analyzed the plate theories via asymptotic
anclyeis. See e.g., [3] and (4] and references there. Current development
of numerical methods leads to the understanding of the plate and shell

modeling as the application of the dimensional reduction principles to the

three~-dimensional pr.blem. This then l-ads to a hicrarchical modeling and to

a convergent sequence of models. Adaptive approaches together with the

a-posterlori analysis of the error of the model is a realistic goal to be




achieved.

The recent development of the h-p version of the finite element method
allows to create a natural hierarchy of models based on the polynomial
approximation through the thickness and the use of the variational
approaches. Such approximation is in a certaln sense optimal. See e.g. [5].
The h-p version also allows for assessing the accuracy of the finite element
solution when compared with the exact solution of the plate model under
consideration, as well as the error when compared with the three-dimensional
solution.

In this paper we discuss the accuracy of various plate models when
compared with the solution of the three~dimensional problem. Although the
3-dimensional solution is not exactly known, we can find it by numerical
means. The error lies in a tolerance bracket which is adjusted to the aims
of our analysis. Hence we can assume that the 3-dimensional solution is
available. The accuracy control is based on the comparison of the solution
for various meshes and degrees of elements. The computation was made by the
program MSC/PROBE with h-p capabilities.

Typically we deal with a uniformly loaded square plate, Ixil < 0.5,

i =1,2, with the plate thickness d = T%ﬁ . Because of symmetries, the

problem is solved for the quarter only. The basic mesh in the quarter of the

plate is defined by the lines X, = Ei’ X, = 51 with various meshes

2
1) 25 elements:

Ei =0, 0.36, 0.492. 0.4994, 0.49988, 0.5
2) 36 elements:

61 =0, 0.3, 0.36, 0.492, 0.4994, 0.49988, 0.5
3) 81 elements:

Ei = 0.15, 0.25, 0.36, 0.43, 0.47, 0.492, 0.4994, 0.49988, 0.5




and additional mesh refinement in the corner if the solution is singular.
Also other plates shapes are considered in the paper. We assume homogeneous
isotropic material with Poisson ratio v = 0.3.

In Section 2 we define the plate problem as a three-dimensional problem
of elasticity and give basic preliminaries.

In Section 3 we define a hierarchical famlly of plate models.

Section 4 deals with the problem of the simply supported plate. In the
first part, 4.1, we discuss the definition of the hard and soft support for a
3-dimensional formulation. We introduce various theorems showing that as
d —0, the difference between the two supports disappears when measured in
the energy norm. A paradoxical behavior of the hard support shows that the
difference between hard and soft support need not necessarily be constrained
to the small neighborhood of the boundary. It depends on the structure of
the boundary of the plate. In 4.1 we discuss the singular behavior of the
three-dimensional solution in the neighborhood of the edges and vertices and
the behavior of the moments and shear forces computed from it.

Section 4.2 presents detalled numerical results for the uniformly loaded
square plate (in 3 dimensions) which serves in the next section as the exact
solution. We concentrate on the difference of moments and shear forces for
the soft and hard supports and descriptions of the boundary layer.

Section 4.3 describes the family of the dimensionally reduced problems
and formulates various pertinent theorems. The well-known Relssner-Mindlin
model appears as one member of this family. The theoretical behavior of the
solution of these models in the neighborhood of the domain corners is
presented.

Section 4.4 reports various numerical results. It shows the accuracy of

the solution of various models when compared with 3-dimensional solutions for




the hard and soft support. The boundary layer and the character of the
solution in the neighborhood of a vertex is addressed.

In Section 4.5, we address the problem of the L-shaped domain for the
soft simple support. The main emphasis is given to the theoretical and
numerical analysis of the solution’s behavior in the neighborhood of the
vertex with the concave angle. The main characteristic difference in the
comparison with the case of square domain is shown . It is shown, among
other things, that the different models have solutions with the different
strengths of the singularity.

Section 4.8 analyzes the Kirchhoff model. It is shown here, for
example, that the Kirchhoff model essentially approximates the hard support
and the classical computation of the reaction is an attempt to get the value
of the reaction for the soft support.

Section 4.7 summarizes the results presented in Section 4.

Section 5 discusses some other boundary conditions. In Section 5.1 the
case of square clamped plates is analyzed. It is shown among others, that
_the Reissner-Mindlin model which captures well the boundary layer of the
3-dimensional solution for the simple support is completely missing a strong
boundary layer for the clamped boundary condition.

Section 5.2 addresses then the square plate which is clamped on two
opposite sides and free on two opposite sides. Attention is given to the
behavior of the solutlions of various models in the neighborhood of the
vertices.

Section 6, the final one, makes additional remarks and some basic

conclusions.




2. Basic notations and preliminaries.

Let w e Rz be a polygonal domain with the boundary I' and Q = {x =

3 d d
(xl,xz,xa) € R™ | (xl,xz) € w, 5 < Xq < 5)' 1 will be called the plate of

thickness d. Further let
d

= 3 d
S ={xeR | (xl,xz) €T, 5 < X, < 5} and

3 d
= = +=
R, {x € R | (xl,xz) € W, X _2}

-

3

By the (exact) solution of the plate problem, we will understand the
solution of the three-dimensional linear elasticity problem for an isotropic
homogeneous material when the equal normal load is acting on R,. More

precisely denoting T = (TI’T T3) the traction vector, we assume T, =T, =

2’ 1 2

0 on R, and T3 = %q(x), X €w on R,. On S various homogeneous

boundary conditicn, which will be specified later will be considered. By u

= {ui}, 1i=1,2,3, and e = {e, ,} 1, =1,2,3, o= {co .} i,j=1,2,3

1j°° ij’

we denote the displacement vector, the strain tensor and the stress tensor.

Let A = {aij}’ i,J=1,...,6 be the Hooke’s law matrix (compliance

matrix) relating the strain and stress

-
11 (2 25 23 0 0 11
%20 31 B 333 0 0 €22
(2.1) Taq | = |231 235 84 0 0 €34
612 0 0 0 a44 0 0 812
%23 0 ags 0| [&y
| T13] | 0 0 0 %6] | “13
(2.1) will be written in the form
(2.2) o = Ac.




In the case of the isotropic material we have in (2.1)

_ _ _ _ (1 - v)E
A1) T8y, = Az, = A+ 2= (1+vi(1T -2v)
- = = = = = = vE
(2.3) %127 %13 T %23 T %1 T %31 T 232 T A T gimy(i o)
a,, = =a,, =2u= E
44 ~ %5 " % T M T T3y

A,u are the Lamé constants, E 1is the modulus of elasticity, v is the

Poisson’s ratio, and

A = vE = E
T vl -2m k= st1+0)
Further we let
3
(2.4) eA(u) = % I [ :E: vljeij] dx
0 i, j=t

1
=3 f ("1 1°11 ¥ “22%22 * 733%33 * 2712°12 * 2723%23 * 2"13313]01"

be the strain energy expression. We use the notation eA(u) to emphasize

that (2.4) is based on A given by (2.1). By the total energy we denote

as usual
(2.5) crw) = A - Q)
where
(2.8) Q(u) = J %[us(xl,xz,g) + ua(xl,xz.-g)]dx

W

The exact solution u of the plate problem is the minimizer of the total

energy over the set of functions H(Q) ¢ (Hl(ﬂ))3 where H(Q) constrains




(HI(Q))3 on S (not on R,). The boundary conditions of the plate problem

are then uniquely characterized by the set H(Q).

3. The hierarchic family of plate models.

By the plate model we mean a two-dimensional boundary value problem
which approximates the solution of the three~dimensional plate problem
(defined in Section 2). By the hierarchic family of plate models we
understand a sequence of models which solutions converge to the exact
(three-dimensional) solution of the plate model and any model of the sequence
converges (after scaling) as d—0 to the same limit.

The plate model from the hierarchic family is defined as the minimizer

a{™ of the quadratic functional

(3.1) cBuw) = Bw) - Qw

over the set HMH(n) ¢ H(Q) of the functions of the form

ny

J
(n) _ (n)
3.2) u™0 = :E: w50 00 i =1,2.3
=0

n= (nl.n ,n3) and B 1is certain compliance matrix depending on n, which
could be different from A. The solution based on (3.1) and (3.2) will be
called the solution of the n-model.
Because of the assumptions about the symmetry of the load we made in
Section 2 we can assume
u1J = u2J =0 for J even

and

u,, =0 for J odd.




Often, instead of (3.2),

ny

(n) _ (n) 2}

(3.2a) uy (x) = Z u'ij (xl,xz)PJ[xan
J=0

is used. Here PJ is the Legendre polynomial of degree Jj. The solution
u(n) using (3.2) or (3.2a) is the same because the span is the same. Form
(3.2a) is preferable especially when adaptive approaches are used.

Finally by Nk ¢ B we denote the set of functions of the form

L
axi 3’

ui(xl’XZ'XB) i=1,2
(3.3)

“3(x1’x2’x3) = u3(x1.x2)

with u3(x1.x2) € Hz(w). Function uk is then the minimizer of the
quadratic functional (3.1) over Rk (when using matrix B which will be

specified later).

It is obvious that the set H(n) is dense in H(Q) as n, — o, is=
Au(n)——au as n,—o, i=1,2,3 with the convergence
A (n)
in the energy norms. By index A iIn 'u

1,2,3 and hence

we indicate that the matrix A

in (3.1) is used.
There is a vast amount of literature devoted to the derivation of

various plate models. We refer here to [1,3,4] and references therein.

4. The problem of the simply supported, uniformly loaded (g(x)=1) plate.

In this section we still analyze various features of the plate problem
when the simple support, which is the typical one in engineering analysis, is
imposed at the boundary. In Section S we will address the plate problem with

some other boundary conditions and discuss the properties of its solution in




comparison with the solution of simply supported plates.

4.1 The (three-dimensional) plate problem and the basic properties of its

solution.

In this section we will address the three-dimensional plate problem and
the properties of itr solution. The solution will serve as the basis for the
assessment of the accuracy of various plate models.

The simple support is an idealization which has no standard definition
in the three-dimensional setting. We will consider here only two different
types of simple s woports:

a) the soft simple support
B) the hard simple support.
The soft simple support is characterized by the set HS(Q) = {u €

(Hl(ﬂ))alu =0 on S} and the hard simple support is characterized by the

3

set HH(Q) = {u € (Hi(Q))alu =0, u, =0 on S}). Here by u, we denote

3 t t

the displacement in the tangential directioncn T, 1l.e. u, = ultl*-uzt2
where t = (t1't2) is the unit tangent to TI. In the vertices of w (w is
assumed to be a polynomial domain) no constraint condition is prescribed.
Because u € (HI(JZ))3 the cénstraint is interpreted in the usual tracc
sense.

The basic physical ‘nterpretation of both boundary conditions is
obvious. In the case of the soft support, no tangential shear stresses are
present, while in the case of hard support the tangential stresses lead to
the twist moment reaction.

Let us first discuss the differences between tie twc mentioned cases of

simple support for d small.

Theorem 4.1. Let ui and uﬁ be the solution of the plate problem with the

thickness d for the soft and hard support cases, respectively. Then




eA(us - uH) e
(4.1) d d > 0 as d—0
A, S
€ (ud)
The proof follows by arguments used in [2] [6]. o
A, S A, H A s HV?
Because RS > RH we have ¢ (ud) 2 € (ud) and F:(ud-ud)] =

1/2
] Theorem 4.1 shows that the difference between both

[sA(ug) - eA(ug)
supports measured in the (relative) energy norm converges to zero as d—0.
It is necessary to underline that this holds for the energy norm and not for
all other norms as will be seen later. The main difference between the two
supports is the behavior of the solution in the neighborhood of S. The size
of this neighborhood depends on the relation between the plate thickness d
and the smoothness of TI. The following example shows that.
Let us consider w. to be a regular m-gon inscribed in the unit

circle C as shown in Figure 4.1.

g

C

Figure 4.1. Scheme of the m-gon W (m = 8).

10




3

H S

Denote by Y and Uy respectively, the (three-dimensional) solution
for the hard and soft support for the m-eck W By ug c and ui c ve
denote the solution on C x [—g, %] where on I'c X [-g. g] the hard and

soft supports, respectively, are imposed. The sclution is defined

analogously as the minimizer of the energy over NH or ﬂs. We then have

Theorem 4.2. For any 0 < d < do.

lim u m-——au
m—wo

The convergence is understood in the energy norm on Qm. For the proof
see
(6]. o
It is possible to compute the value

S
E(U) = 1lim 1lim l“m.d(o:O,O) - uEld(0,0,0)|
d—0 m—e |u§,d(0,0,0)|

£€(0.3) = 0.264

(We have 1im |ui 4(0,0,0)1 > 11im |uﬁ
m—3c0 ’ m—00

4¢0,0,01)

Theorem 4.2 shows that when m 1is large with respect to d-1 then the
neighborhood of S where there is significant difference between hard and
soft support solution can "fill" the entire Q.

The boundary of the plate R has edges and vertices. Local behavior of
the solution of the plate problem in the neighborhood of these edges and

vertices is well-known. See for example [7] and [8].

11




Let us consider .irst the horizontal singularity. To this end let us
assume that Fl is a side of the polygon « and F1 = (xl,x2 ||x1| < a,

X, = 0}. Then the (horizontal) edge is El = {xl,xz,x3|(x1,x2) € F1 Xy =

2
g}. In the neighborhood of E1 we have
ul(xl.xz.xa) = + smoother term
- A
(4.2) uz(xl.xz,xa) = C(xl)r1¢2(9) + smoother term
- A
ua(xl,xz,xs) = C(xl)r1¢3(e) + smoother term

where (rl.e) denotes the polar coordinates in the plane x with the

2'%3
origin in El‘ Functions ¢2 and ¢3 are analytic in 6 and function
C(xl) is smooth on (open) interval -a < X, < a. In (4.2), the smoother
term weans a function which is smoother in the neighborhood of El than the
functions rl¢1(0). 1 =2,3. For the hard and soft support we have A =
0.71117 (independently of the Poisson’s ratio v). Because A < 1, the

stresses are unbounded in the neighborhood of El' Nevertheless the moments

d4/2

(4.3) My (%, %) =J' oy g Xy 1,3, = 1,2
~a/2
and the shear forces
ds2
(4.4) Q 4 (x,.%;) = f oy ydxy, 1=1,2
-d/2

are bounded in the neighborhood of Pi (except possibly the vertices of

Fi).

Consider now the vertical edge E,. E, = {x, =0, x d}

2 2 1 2 2

when we assumed that the vertex of w 1lles iIn the origin. We will assume

that the internal angle at this vertex is «, O < a £ 27, In the

12




neighborhood of E, we have

2
= A1
ul(xl’x2'x3) = Cl(xa)r2 ¢1(9) + smoother term
= Ay
(4.5) u2(x1.x2.x3) = Cl(xa)r2 ¢2(9) + smoother term

Az
u3(x1.x2.x3) C2(x3)r2 Y(6) + smoother term

Here (rz,e) are the polar coordinates in the x » Xy plane, ¢i(6) and

1
d d
y(6) are analytic in 6, and Cl(x3) and CZ(XB) are smooth on [-E’QJ

with possible singular behavior at tg.

Coefficients A and A and functions ¢i' ¥ depend on « and the

1 2

type of boundary conditions. Coefficient A, can be complex. Then there is

1
a palr of conjugate coefficients because (4.5) has to be real.

- ReAy
ul(xl,xz.xa) = Cl(xa)r2 sin(ﬂmlmhllgr)¢1(e)

+ Cl(x3)r‘2 cos(VmImlllgr)¢1(9)

+ smoother terms

and analogously uz(xl,xz,xs).
The coefficlents AI'AZ

>1 for some angles «. Then these angles are exceptional and in general the

can be integers or they can be of multiplicity

term rA has to be replaced by rh(lgr)s. S an integer. Only a finite
number of exceptional angles exist. In the neighborhood of thece exceptional
angles the singular behavior is not continuous with respect to the «. We
will not address here these cases although they will also occur in some of
our examples.

In Table 4.1 we show the values of Al and Az in (4.5) for hard and

soft supports for various angles «. They are independent of the Poisson’s

13




ratio v. We see that the angles a = 30: 45: g0’

Az is an integer.

The angle 360°

30-135 the coefficient A

1

complex. For more see [9].

Table 4.1 The coefficients A

are exceptional because

leads to the multiplicity two.

For «

in the table for the soft support case are

1

and AZ in (4.5) for the hard and soft

support.
Ay Az
o
HARD SOFT HARD SOFT

8.0630

30 3.4846 + 6. 0000 6.0000
i 4.2028
5.3905

45 2.4129 + 4.0000 4.0000
1 2.7204
2.7396

90 1.4208 + 2.0000 2.0000
1 1.1190
2.0941

120 1.2048 + 1.5000 1.5000
i 0.6046
1.8853

138 1.1368 + 1.3333 1.3333
i 0.3606

150 1.0832 1.5339 1.2000 1.2000

225 0.72863 0.6736 0.8000 0. 8000

270 0.5951 0.5445 0.6667 0.6667

315 0.5330 0.5050 0.5714 0.5714

360 0. 5000 0.5000 0.5000 0.5000

We see that for some angles we have A < 1

stresses are unbounded as r, —0.

2

14

We have then

and hence in these cases the




At
(4.8) My =CirptTg

(8) + smoother terms, 1,3=1,2

(4.7) QSJ 2 2 ¢J(e) + smoother terms, J=12

We mention that the expressions (4.6) and (4.7) do not follow directly from
(4.5) because the solution has other singularities in the vertex and also
Cl(xs) in (4.5) can be singular for Xq = tg . Nevertheless these
singularities are weaker and do not influence the form (4.6) (4.7).

The expressions (4.6) and (4.7) show that the moments and shear forces
in the neighborhood of the vertex of ® can be unbounded. For example, this
happens when w is an L-shaped domain and « = 270°. The shear forces have
the same strength of the singularity for the hard and soft support, while the
singularity of the moments is different for the hard and soft support. Fur-
thermore, the singular behavior is different for the moments and shear
forces. The mentioned behavior described by (4.6) and (4.7) is valid only
for r « d as will be seen later in Section 4.5.

It is interesting to mention that the differences in the singular
behavior of the hard and soft supports do not explain Theorem 4.2, whose

proof is based on completely different principles.

4.2 The (three-dimensional roblem of a simply su rted, uniformly loaded

square plate. Numerical results.

In this section we will present numerical results of the analysis of the

square plate.

1
5| Ix1 < 0.5, |x,] <0.5} and let d= 5= and

consider the three-dimensional problem with v = 0.3. In this case « = 90°

Let w = (x , X

and hence from Table 4.1 we conclude that the moments and shear forces are

bounded and are sufficiently smooth up to the boundary.

15




The main question we will consider in this section is the difference
between the solution when the hard and soft simple support is prescribed

on S. The solution is obviously symmetric with respect to the axes X, and

X, and hence orly a quarter of the plate will be considered.

2

First we consider the behavior of the twist moment Mlz(xl,xz) for x1

= 0.4, X, = 0.5 as a function of the variable Xy Denoting M?Z and

M?Z’ respectively, the twist moments for the hard and soft support, we
have M?z(xl.o.s) = 0 while M?Z(XI’O'S) # 0. This indicates that the
boundary layer has to be present because of Theorem 4.1 which shows that the
difference of both solutions converges to zero as d—0.

In Table 4.2 we show the values of the twist moment Mlz(xl,xz). We
clearly see that the boundary layer is of order d.

Table 4.2 The twist moment Mlz(xl,xz) x, = 0.4, 0.5 for the hard and

1

sof't support.

X, X, = 0.4 X = 0.5
HARD SOFT HARD SOFT
0.0 0. 0. 0. 0
0.02368 0.0018 0.0018 0.0020 0
0.11842 0.0092 0.0082 0.0097 0
0.21318 0.0162 0.0163 0.0172 o
0.45000 0.0289 0.0292 0.0315 0]
0.48073 0.0294 0.0297 0.0323 0
0.48026 0.0295 0.0285 0.0324 0
0.43500 0.0285 0.0237 0.0325 0
0.49713 0.0295 0.0178 0.0325 0
0.49903 0.0295 0.0080 0.0325 0
0. 49950 0.0295 0.0045 0.0325 0
0. 50000 0. 0295 0. 0.0325 0




Remark. The exact solution is not known. Nevertheless the data we report
are reliable. They were computed by refined meshes, and high degree elements
with an analysis of the accuracy.

Figure 4.2 shows M]:Z(O. 4, x,) with max M, (0. 4, x,) = 0.0295 and

M§2(0.4, x,) with ma.xM?z(O.ll, xz) = 0.0297.

2

"

>

ﬁ‘? 0.03 I //—E

N / !
, {

o

2"’ 0.02—

e HARD: 0.0295

E SOFT: 0.0297

S 0.01

S HARD

C% 0 - lS()Fr.[‘

E 0 0.1 0.2 0.3 0.4 0.5

B _X —

Figure 4.2. The moments M¥2(0.4, xz) and Mfz((0.4, x2) for the

3-dimensional problem.

The shear forces QSJ(xl,xz), J =1,2 show the similar boundary layer we

mention that ng(xl, 0.5) = 0 while 032(x1' 0.5) # 0.

17




Table 4.3. The shear force Q3J(x1,x2), J=12, X, = 0.4, 0.5 for the
hard and sof't support.
X, 0.4 X, 0.5
2 et U2 0 Q32
HARD SOFT HARD SOFT HARD SOFT HARD SOFT
0.0 0.2460 | 0.2446 | O. 0.0 0.3373 | 0.42086 0.0 0.0
0.02368 |} 0.2451 0.2445 | 0.0041 0.0041 0.3373 | 0.42086 0.0 -0.6433
0.11842 0.2347 0.2346 0.0215 0.0214 0.3260 0. 4080 0.0 -3.19886
0.21316 0. 2086 0. 2086 0.0386 0.0386 0.2973 0. 3740 0.0 -5.6833
0. 45000 0.0526 0.0503 0.1274 0.1274 0.1073 0.1326 0.0 -10.4513
0.48073 0.0207 |-0.0046 0. 1526 0. 1526 0.0534 |-0.1334 0.0 -10.6353
0. 49026 0.0107 |-0.4193 0. 1606 0.1633 0.0306 |-0.8126 0.0 -9.9046
0. 49500 0.0053 [-1.9206 0. 16860 0.1760 0.0184 (-2.1746 0.0 -8.6002
0.49713 0.0030 |-3.7753 0. 1680 0.1880 0.0133 |-3.5240 0.0 -7.7056
0. 439303 0.0012 |-6.8740 0.1701 0. 2066 0.0038 |-5.4623 0.0 -6.9546
0.49850 | 0.0005 {-8.1673 § 0.1706 | 0.2133 | 0.0019 |-6.0693 0.0 -6.8382
0. 50000 0.0 -9.7186 0.1713 0.2213 0.0 -6.7933 0.0 -6.7933
In Figures 4.3 (= reaction) and

and 4.4 we show 013(0.5, xz)

Q23(0.5,x2) for the soft support.
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Figure 4.3. The shear force 031(0.5,x2) for the soft support

(three-dimensional problem).
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Figure 4.4. The shear force 032(0.5, xz) for the soft support

(three~dimensional problem).
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Tables 4.2, 4.3 and Figures 4.2, 4.3, and 4.4 show that the difference

between hard and soft support resides in the boundary layer behavior. The

hard support does not have a boundary layer and can serve as a smooth exten-

sion to the boundary. To understand the boundary layer more precisely we let

Miz(x1, Xa) - Mia(x1,%a)
Mlilg(xh 0.5)

- - (0.5 - Xa)
= exp [ B1z(x1"‘2)_d—‘]

and

Qg1(x1.X2) - 031(x1.x2)
Qg,z(x1. 0.5)

= exp [—le(xl,xz)—'-d——

Table 4.4 shows some values of Blz(xl,xz) and le(xl,xz).

Table 4.4 The functions Blz(xl,xz) and BSl(xl’xz)'

x, Bi2(xy,x2) B31(x1,x2)
X1 =0.4 | 9 =0.49 | %3 = 0.4 | x4 =0.48 | x, 0.5
0. 49263 3.34 2.74 3.22 3.72 2.17
0. 49500 3.28 3.10 3.24 3.53 2.27
0. 49666 3.26 3.18 3.28 3.53 2.28
0.49878 3.27 3.30 3.40 3.62 2.23
0.49950 3.31 3.34 3.51 3.73 2.22
0.49989 3.46 3.49 3.62 3.84 2.22
0.49991 3.52 3.54 3.63 3.84 2.21
0.49994 3.62 3.64 3.63 3.84 2.21

In Figure 4.5 we show the function 331 and in Figure 4.6 we show the 312.

We see that the 831 and 832 increases when x.,—0.5. This is typical

2

for the three-dimensional formulation where essentially infinite number of
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boundary layers are present but here only the first one is visible. Also

typical is the discontinuity of le(xl,xz) when xl—-)o.s. We see that

for X, = 0.5 the value of 831 is significantly smaller than for x, =0.489.

4 0.49
x =0.
-// 1 - 3.84
i N % S R -—-—=-—13.64
3 ‘X1=0.4
fx1=0.5
0 N 2.21

0490 0.492 0494 0496 0498 0.500

— X

2

Figure 4.5. The function Bal(xl,xz) for Xy = 0.4, 0.49, 0.5

(three-dimensional formulation).

/1 1362

]

0.490 0492 0494 0496 0.498 0.500

_—X —

2

Figure 4.6. The function Blz(xl,xz) for X, = 0.4

(three~dimensional formulation).
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The shear force 031(0.5.x2) is the reaction of the plate. We see from
Fig. 4.3 and Table 4.3 that for the soft support this reaction is negative in

the neighborhood of the vertex X, = 0.5. This relates to a well-known effect

in the Kirchhoff theory (see Section 4.6). It is interesting to define

R = I Q,, (0.5, x,) dx,
I

where I = {0 < x, < 0.5 | 031(0.5,x2) S 0}). We get in our case R = 0.0290.

L
100 °

63 1(0.5,0.5), as d—>0 where 63 1 is a certain value which we expect

2

The data we present here are for d = 03’1(0.5,0.5)d—-9
to be approximately 0.068, although the authors do not know whether a
rigorous proof of it exists. Analogously R— R as d—>0. We expect
that R =~ 0.029 which is different from the value 0.0325 arising from the
Kirchhoff model (see Section 4.6).

The boundary layer is also visible i1 the energy of the solution. We
have in our case d = L

100

A

[cA(uH)]l/2
_—_ = 0.885
S
e (u”)

and hence the difference between hard and soft support measured in the energy
norm is 9%. Of course as d—0 the energy norm of this difference
converges to zero due to Theorem 4.1. We discussed only the square plate
here. If the plate is rhombic then the difference between the hard and soft

support increases.

4.3 The dimensionally reduced models.

We will consider here the n-model introduced in Section 3 which is based

on the minimization of tiie quadratic functional GB(u) given in (3.1) over
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the set of all functions of the form (3.2) constrained in the space H(Q).
We have now:

Theorem 4.3. Let n = (nl,nz,na), n, 21, n, 21, n, 2 2. Denoting by

Auén)

(2.3)) then for both types of simple support we have

the plate model based on (3.1) (3.2) with B=A (A given by (2.1)

eA(Aun - uy)
(4.8) 4~ > 0 as d—0
g (ug)
The proof follows by using arguments in [6]. u]

The assumption that n, 2 2 1in Theorem 4.3 is essential. If n, = 0

and v =0 then (4.8) still holds but ‘'when » > 0 (4.8) does not hold.
This means that the case n, = O with the matrix A cannot be used except
when v = 0. Hence the following problem arises: Find a class B of

matrices B which when used instead of A 1leads to

172
ABuf - uy)
(4.8a) - Ud — 0 as d-—0
e (ug)
Here by Bu: we denoted the minimizer of (3.1) with n = (1,1,0) and matrix

B instead of A.

The class 3 which guarantees (4.8a) is the class of matrices (4.9).
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[~ h
Ez ”Ez 0 0 0 0
i~-v 1-v
122 Ez 0 0 0 0
1-v 1-v
0 0 Ez ) 0 0
(4.9) B = 1-v
E
0 0 0 T 0 0
EX
0 0 0 0 T 0
ER
_ 0 0 0 0 0 T |

Here E and v are the modulus of elasticity and the Poisson’s ratio and

# > 0 1is an arbitrary parameter. We have,

Theorem 4.4. Let n = (1,1,0) and let Bun be the minimizer Of (3.1) (3.2)

with the matrix B given by (4.9). Then for both types of simple support we

have
eA(u - Bun) V2
(4.9) Ad d > 0 as d—0
€ (ud)
The proof follows by the arguments used in [6]. o

The coefficient X 1in B does not influence the validity of (4.9) but
it Influences the size of the difference Bug-ud. The solution Bug (n =
(1,1,0)) 1is the famous Reissner-Mindlin solution. The recommendation for
the selection of H was made by various authors. In [10] the value 5/6 is
recommended. In the connection with wave propagation in [11], suggested
values range almost from 0.76 for v =0 to 0.81 for v = 0.5. Another
recommendation is made e.g. in [12]. H(0) = 0.833, H(0.33) = 0.850, X(0.5)

= 0.87. We will address this question later in the numerical way.

Let us mention that for any n-model with n3 2 2, using the matrix B
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will not lead to (4.9).
The n-model reproduces Theorem 4.2. We have,
Theorem 4.5. Let n, 2 2 with using A or n, = 0O using B. Then for any

dsd

(0]
(n)S (n)S
lim ud.n —_— ud,c
mn— o

(n)H ~(n) (n)

1im ud,n  — ud,c * ud,c
m— o
For the proof, again see [B]. o

Using matrix B and (3.3) together with (3.1) (3.2) we obtain the

Kirchhoff solution u: and

Theorem 4.6. We have

1/2

eA(u - uk)

(4.10) A" d — 0 as d-—0
£ (ud)

See [6] for proof. o

The Kirchhoff model cannot distinguish between the soft and hard
support (see Section 4.6 for more) and the second part of Theorem 4.2 holds
for the Kirchhoff model too. Various paradoxical properties of Kirchhoff
model for simple support were discussed in [6,13,14].

The n-model solution has a boundary layer. In [15] and [16] the boundary
layer of the Reissner-Mindlin solution was rigorously analyzed in detail when
w has smooth boundary. The rigorous analysis of the boundary layer structure
ot the solution for a domain w« with plecewise smooth boundary is not avail-
able. For additional analyses see also [17]. The solution from the Kirchhoff
model has no boundary layer.

From (4.8) and (4.10) it follows that the Reissner-Mindlin solution con-
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verges in energy to the Kirchhoff model. Nevertheless we underline that this
is only in the energy. At the boundary the convergence does not occur. Using
the analytical results in [15] for infinite half-plane this can be easily
analytically demonstrated.

In Section 4.2 we analyzed the singular behavior of the plate solution in
the neighborhood of the corners of the domain. We especially addressed in

(4.6) (4.7) the singularity of M and Q as functions of internal angle

1J 1J

®. The Relssner-Mindlin model, n-model, and Kirchhoff model solution also

lead to the singular behavior of Mi and The forms (4.6) (4.7) are

3 QiJ'

also valid here, i.e. we have

(n)
M =C At 1

1 12 ¢1J(9) + smoother terms, 1,§=1,2

Y L -
Q3J = C2r2 ¢J(9) + smoother terms, J=12

(n)
i

for different models and for different types of boundary conditlions. In Table

In general A depends on n, 1i.e. on the model, and they are different

4.1 we gave the values of A i=1,2 for the three-dimensional problem.

1)

In Table 4.5 we list the coefficients Ai for the n-models and Kirchhoff

model for the soft support and hard support analogously to Table 4.1. We
mention that the Kirchhoff model does not distinguish between the hard and

soft support.

Table 4.5 The coefficients A and AZ for the hard and soft for various

1

models.
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Ay Az
o HARD SOFT HARD SOFT
N (1,1,2) |RM,(1,1,2) K RM, (1,1,2) K
3 dim 3 dim 3 dim
8. 0630
30 3.7972 | 3.4888 . 5. 0000 6.0000 | 4.0000
1 4.2028
5. 3905 ,
45 2.6083 | 2.4129 + 3.0000 4.0000 | 2.0000
1 2.7204
2.7396
a0 1.4905 | 1.4208 + 1.0000 2.0000 | 0.0000
1 1.1190
2.0941
120 1.2404 | 1.2048 + 0. 5000 1.5000 | -0.5000
i 0.6046
1.8853
135 1.1609 | 1.1388 |  + 0.3333 1.3333 | -0.6666
i 0.3606
150 1.0978 | 1.0832 1.5338 | 0.2000 1.2000 | -0.8000
225 0.7354 | 0.7263 | 0.6736 0. 2000 0.8000 | -0.8000
270 0.6040 | 0.5951 0.5445 | 0.3333 0.6667 | -0.6667
315 0.5379 | 0.5330 0.5050 0.1428 0.5741 | -0.8572
360-0 | 0.5000 | 0.50000 | O.5000 0.0000 0.5000 | -1.0000

For o« = 360° we list the limiting value a« = 360-0 which is not equal
to the value o« = 360°. We see that for the hard support the Relssner-Mindlin
model and (1,1,2) model give slightly different values while the Kirchhoff
model ylelds very different singularity coefficlents. For the formula for

these values we refer to [(9].

4.4. The n-model of simply supported uniformly loaded square plate.

Numerical results.

In this section we consider the same problem as In Section 4.2 namely
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1
100 °

Further we will assume that E

the square plate d = v = 0.3 and soft and hard simply support.

10”.

As we mention in Section 4.3 the Reissner-Mindlin model (n = (1,1,0))
depends on Lhe value of the parameter ¥H. Let us first show the dependence
of the energy e(#) (of the quarter of the plate) on the value of X for

various models. Denote further the quantity

172
.- [|em) - &(3 dim)l]

[e(3 dim) |

The values of ¢€(H#) and € for the soft support is shown in Table 4.6.

We see that by using different values of the parameter H, the energy of
the RM model can be over or under the true 3-dimensional energy. The energy
in the case (1,1,2) is smaller than the energy of the RM solution for X = 1.
If v =0 then for =1 we get A =B and the energy of (1,1,2) model
would be larger than that of the RM model. It seems remarkable that the per-
formance of RM model (for this particular case) is better for all g SsH<1
than that of the model (1,1,2) and X = 1. This conclusion is not valid in
general for all boundary conditions. The model (3,3,4) (H = 1) gives then

the better results than the RM model.
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Table 4.8 Energy e(H) as a function of ¥ and different plate models for

the soft support

Y, e(#) x 10° €% Model
1 0.234563 2.69 RM
0.91 0. 234674 2.26 RM
0.87 0.234729 0.41 RM
0.845333 0.234765 1.16 RM
5/6 0.234783 1.46 RM
1 0.234528 2.95 (1,1,2)
1 0.234731 0.29 (3,3,4)
1 0.234732 0.01 (5,5,6)
0.87 0.234693 1.3 '"{ (1,1,2)
0.87 0.234913 2.76 (3,3,4)
0.87 0.234914 2.78 (5,5,86)
Kirchhoff 0.232392 g.98 K
3 dim 0.234735 S _—

Table 4.6 has addressed the soft support. Table 4.7 addresses the hard

support.

Table 4.7 The energy for the various models for the hard support.

3 e x 10° €% Model
0.87 0.232524 1.22 RM
1 0.232472 0.85 (1,1,2)
1 0.232489 0.01 (3,3,4)
1 0.232489 — (5,5,6)
Kirchhoff | 0.232392 2.04 K
3 dim 0.232489 S _—
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We see that for hard support the performance of the model (1,1,2), H =1 |is
better than of RM model with # = 0.87, which is in contrast with the soft
support. Let us also underline that the energy of RM model with # = 0.87 is
larger for hard support than that of the energy of the 3-dimensional solution.
The same occurs for X = g and soft support.

In Table 4.6 we also report the values of the (nl,nz.ns) model when
24 = 255 = I‘¥§; with #=1 and H = 0.87. We see that it is advantageous
for the model (1,1,2) but detrimental for higher models compared with the
solutions of the 3-dimensional plate model.

In Table 4.8 we show the value of the shear force Q31 on the diagonal

X, = %X, and the error when compared with the solution of the 3-dimensional

1 2
plate model.

Table 4.8 The shear force 031 and its error on the line x1 = x2 for the

sof't support.

=1 ¥ =0.91 ¥ =0.87 X = 5/6
X1 = Xz 3 dim
Q31 €% Q31 €% Q31 €% Q31 €%

0. 4905 -0.29 | -0.22 24.9 | -0.26 11.9 | -0.28 5.3 | -0.29 0.92
0. 4350 -1.55 | -1.486 6.0 § -1.52 2.3 | -1.55 0.7 || -1.57 0.77
0. 4968 -2.78 | -2.79 0.4 | -2.80 0.8 | -2.81 0.9 | -2.81 0.81
0. 4986 -4.75 | -5.01 5.5 | -4.87 2.6 | -4.81 1.3 )| -4.75 0.07
0.49905 | -6.37 | -5.70 6.1 -5.51 2.5 | -5.41 0.9 | -5.33 0.76
0.49995 | -6.70 | -7.08 5.6 | -6.77 0.9 § -6.62 1.4 | -6.49 3.31
0.5 -6.79 | -7.186 5.5 | -6.83 0.7 | -6.68 1.4 | -6.54 3.83

In what follows we always use in the RM model the value of X = 0.87,
unless otherwise stated.

In Tables 4.9a and 4.8b we show the moment M computed by the RM (¥ =

12
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0.87) and (1,1,2) (# = 1.00) model for the hard and soft support.

Analogous results are given in Table 4.2 for the three-dimensional solution.
In the table we also show that relative error € 1in comparison with the

three-dimensional solution whenever it is larger than 0.1%. In the case of

hard support, both RM and (1,1,2) models have error < 0.1%. It is

interesting that the model (1,1,2) produces a larger error for the soft

support moment M than the RM model. Model (3,3,4) would give better

12
results than the RM model.

Table 4.9a The moment Mlz(xl,xz). X, = 0.4 for hard and soft support.

1

X, = 0.4
X2 HARD SOFT

RM (1,1,2) RM €pn% (1,1,2) | €112%
0. 0. 0. 0. 0. 0. 0.
0.02368 0.0018 0.0018 0.0018 0. 0.0018 0.
0.11842 0.0092 0.0092 0.0092 0. 0.0092 0.
0.21316 0.0162 0.0162 0.0163 0. 0.0163 0.
0.35526 0.0252 0.0252 0.0254 0. 0.0254 0.
0. 45000 0.0289 0.0289 0.0292 0. 0.0292 0.
0. 48079 0.0294 0.0294 0.0297 0. 0.0297 0.
0. 49026 0.0295 0.0295 0.0286 0.3 0.0283 1.
0. 49500 0.0295 0.0295 0.0239 0.7 0.0246 3.4
0.489713 0.0285 0.0285 0.0180 0.9 0.0188 5.03
0. 49903 0.0295 0.0295 0.0087 0.3 0.0085 B.
0. 49850 0.0295 0.0295 0.0045 0. 0.0047 6.
0. 50000 0.0295 0.0285 0. 0. 0. 0.
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Table 4.9b The moment MIz(xl,xz), x1 = 0.5 for hard and soft support.

xy = 0.5
X2 HARD SOFT
RM (1,1,2) RM (1,1,2)
0. 0. 0. 0. 0
0.02368 0.0019 0.0018 0. o
0.11842 0.0097 0.0097 0. 0
0.21316 0.0172 0.0172 0. 0
0.35526 0.0270 0.0270 0. 0
0. 45000 0.0318 0.0315 0. 0]
0. 48079 0.0323 0.0323 0. 0]
0.49026 0.0324 0.0324 0. 0]
0.49500 0.0325 0.0325 0. 0
0.49713 0.0325 0.0325 0. o
0.49903 0.0325 0.0325 0. 0]
0. 49950 0.0325 0.0325 0. 0
0. 50000 0.0325 0.0325 0. 0

In Tables 4.10a and 4.10b we show analogous data for the shear forces.

Once more we see that for hard support the accuracy is high for RM and
(1,1,2) model. Otherwise we see once more that the values are better for RM
model (# = 0.87) than for the (1,1,2) (¥ = 1) model.

We will see in Section 5 that this conclusion is not necessarily correct

for other boundary conditions.
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Table 4.10a The shear forces Qal(xl.xz). Xy = 0.4

X, = 0.4
Qa3
X2 HARD SOFT

RM (1,1,2) RM €pn% (1,1,2) €q12%
0. 0.246 0. 246 0.246 0.2486 0.
0.02368 0.245 0.245 0.245 0. 0.245 0.
0.11842 0.234 0.234 0.234 0. 0.234 0.
0.213186 0.209 0.208 0. 208 0. 0.208 0.
0.35526 0.134 0.134 0.134 0. 0.133 0.
0. 45000 0.053 0.053 0.056 0. 0.055 0.
0. 48079 0.021 0.021 0.001 — 0.0086 —_
0. 49026 0.011 0.011 -0. 403 3.8 -0.343 18.1
0. 49500 0.005 0.005 ~-1.912 0.4 -1.822 5.1
0.49713 0.003 0.003 ~-3.817 1.1 -3.824 1.3
0. 49903 0.001 0.001 =7.047 1.0 -7.379 5.8
0. 49950 0.000 0.000 -8.214 0.3 -8.695 6.3
0. 50000 0. 0. ~9.639 0.8 -10.323 6.3
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Table 4.10b The shear forces QSl(xl’xz) and 032(x1'x2)' X, = 0.5
X, = 0.5
Qa1 Q32
X2 SOFT SOFT
RM eru’ | (1,1,2) | e112% RM eru | (1,1,2)| e442%
0. 0.419 0. 0.419 0. 0. —_ 0. e
0.02368 0.421 0. 0.421 0. -0.638 0.8 -0.685 6.2
0.11842 0. 408 0. 0.408 0. -3.173 0.8 -3.389 6.2
0.21316 0.374 0. 0.374 0. -5.617 0.8 -6.018 6.2
0.35526 0.273 0. 0.273 0. -8.844 0.8 -8.474 6.2
0. 45000 0.133 0. 0.135 1.5 [-10.363 0.8 |-11.095 6.2
0.48079 -0.125 — |§| -0.105 —_ -10.559 0.6 [-11.332 6.5
0. 49026 -0.807 0.6 -0.756 6.9 -9.844 0.6 |-10.651 7.5
0. 48500 -2.188 0.6 -2. 157 0.8 -8.505 1.1 -9.251 7.5
0.49713 | -3.573 1.3 -3.645 3.4 -7.569 1.7 -8.221 6.6
0. 49903 -5. 499 0.6 | -5.815 6.3 -6.881 1.8 -7.368 6.0
0. 49950 -6.073 0.7 | -6.485 6.5 -6.721 1.7 -7.252 6.4
0. 50000 -6.678 1.5 -7.221 6.5 -6.678 1.8 =7.221 6.5

In Table 4.11 we show the values of 031(0.5, 0.5) for soft support for

various models.
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Table 4.11 The value of 031(0.5, 0.5) for soft support and various plate

models.

X Qa1 €4 Model
1 -7.15 5.6 RM
0.91 -6.83 0.8 RM
0.87 -6.68 1.5 RM
0.845333 -6.61 2.8 RM
5/6 -6.54 3.4 RM
1 -7.22 6. (1,1,2)
1 -6.82 0. (3,3|4)
1 -6.80 0.3 (5,5,6)
0.87 -6.73 0.9 (1,1,2)
0.87 -6.36 6.3 (3,3,4)
0.87 -6.34 6.6 (5,5,6)
3 dim -6.97 —_— _—

We see that for the RM model H > 0.87 1is optimal. For the (n,n,n+1) model
optimal # 2 0.87 for all n and as n increases the optimal X
approaches 1 and the model (1,1,2) (# = 0.87) leads to smaller error than
RM model with X = 0.87.

In Table 4.12 we show the function BSI for the RM model (# = 0.87)
and (1,1,2) model with X = 1 which are defined in the same way as in Table

4.4 for the (three-dimensional) plate model.
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Table 4.12 The values of Bal(xl,xz). x, = 0.4, 0.5 for various models

1
(soft support)

-
x, Xy = 0.4 Xy = 0.5
RM (1,1,2) RM (1,1,2)
0.49263 3.25 2.48 2.21 2.37
0. 49500 3.24 3.47 2.23 2.41
0. 49666 3.24 3.47 2.20 2.39
0.49878 3.23 3.47 2.04 2.24
0. 49950 3.23 .47 1.91 2.12
0. 49989 3.24 3.47 1.83 2.03
0.49991 3.24 3.47 1.83 2.03
0.49994 3.23 3.47 1.83 2.03

It has been shown in [15] and [16] that when the boundary is smooth the
strength of the boundary layer for the RM model is 331 =v 120 = 3.23.
The detailed theoretical analyses of the boundary layer behavioi. of the

(1,1,2) model is not available. In {17] was suggested that (0.5, xz) ~

B3
V/E;;“ = 2.28 for the RM model.

To the authors’ knowledge there is no rigorous analysis of the boundary
layer in the neighborhood of the corners of w for RM or any other model.

We have seen that as d-——50 the difference between the soft and hard
support disappears when measured in the energy norm. This is not true for
the values influenced by the boundary layer. In Tzble 4.15 we show for the
RM model with # = 2 the values Q (0.5, 0.5) and dQ, (0.5, 0.5) for d
= 0.025 and d = 0.01 for the soft support.
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Table 4.13 The values of 031(0.5, 0.5) as function of d

d Qa1(0.5, 0.5) | dQgz,(0.5,0.5)
0.025 -2.68 -0.0671
0.01 -6.54 -0.0614

We see that anl converges as d — G as expected (but not
theoretically proven). We can expect (see [17]) that for the RM model
031(0.5, 0.5) 1is proportional to Vv ¥ . In Table 4.14 we show that the

expectation 1ls correct.

Table 4.14 The dependence of 031(0.5. 0.5) on H for the RM model.

# 031(0.5, 0.5) | ¥ 2q4(0.5, 0.5)
1.0 -7.15 ~7.15
0.91 -6.83 -7.16
0.87 -6.68 -7.16
5/6 -6.54 -7.16

4.5 _The problem of the L-shaped domain.

In the previous Sectlon we discussed the problem of the square plate.
In this section we will briefly discuss the problem of the simply soft

supported L-shaped plate. The domain w 1is shown in Figure 4.7.
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A%

Figure 4.7 The L-shaped domain.

Once more we will consider the case d = 0,01 and v = 0.3. We will
concentrate here on the behavior of the solution in the neighborhood of the
origin where the solution is singular. We will present only the results of
RM model for # = 0.87. Table 4.5 shows the theoretical strength of the

singularities for the RM and K model for soft support (a = 270°).
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Figure 4.8 The shear force le(o.xz). 032(0.x2) for the RM model.
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Figure 4.8 shows in log log scale the shear forces on the line X, = 0

function of x2).

(0.3333).

the theoretical slope.

(as a

In the figure we also show the expecied theoretical slope

moments and the shear forces.

Moo

MOMENT

in a larger scale.

Figure 4.9 shows the values of the moments M22 and M12 as well as

We see that the singularity is different for the
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Figure 4.9 The moment Méz(O. xz).

M12(0, x2) for the RM model.

We see that for x, > 10.2

2

the slope is 1.666 for 032 and 0.666 for M22'

to the Kirchhoff singularity (also listed in Figure 4.5).
that inside the domalin,

model describes the character of the solution very well.

In Figures 4.10 and 4.11 we show the shear force 032 and the moment

(i.e. of the thickness)
This behavior is related

We see typically

in the distance of order thickness the Kirchhoff

This is typical

behavior of the solution of every plate model as well as for the plate

{three-dimensional) problem.
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Figures 4.10 and 4.11 show the behavior inside w. Figures 4.12 and 4.13

show the shear force Q32(x1' 0) (*%»e reaction) and the moment Mll(xl' 0).
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Figure 4.12 The shear force Qaz(xl. 0)
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Figure 4.13 The moment Mll(xl' 0).
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We see that the singularity in the close neighborhood of the vertex is the
theoretical one as follows from Table 4.5. Nevertheless the Kirchhoff
behavior is not visible because the line X, = 0 1is on the boundary and the

boundary layer is not captured by Kirchhoff model. The shear force

031(x1,0) does not show the singularity because of the influence of the

boundary condition.
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Figure 4.14 The shear force 031(x1,0).

We have shown the results and asymptotic behavior for the RM model
only. They characterize well the behavior for any n-model as well as the

¢

solution of the three-dimensional solutlon.

We have seen that in the neighborhood of the vertex of w we have
exactly two kinds of singularities: one in the neighborhood which is smaller
than the thickness and another one -- the Kirchhoff -- which is valid when

the distance is of order of few thicknesses.
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In Section 4.3 we introduced the (classical) Kirchhoff plate model with
the solution w = Bug . The Kirchhoff model is not able to distinguish
between the hard and soft simple support. Nevertheless the plate problem
{three-dimensional as well as other plate models) converges (in the scaled
energy norm)} to the Kirchhoff solution as d—0. See e.g. [2], [6] and
Theorem 4.5.

The solution w of the Kirchhoff model satisfies the biharmonic

equation
DA2w =q
(4.11) _ dSE
D= ———7
12(1 - v")

If w 1is a polygon and simply suppert is considered the problem could be

also formulated as follows: Find w e Hz(w) such that (4.11) holds and
(4.12) w=Aw =0 on I' (except vertices of w)

This formulation is equivalent to the one based on the minimization of

BG(u). Hence we can formulate the problem as the system

Aw = v

=4

(4.12) Av = 5
w=v=0 on I' (except on the vertices of w)

and w € Hz(w). The conditions that w e Hz(w) is essential. When w 1is a
convex polygon then w can be found directly by (4.12). In this case v €
Hz(w) and w € Hz(w). Nevertheless, when « > m® then the solution of

(4.12) ylelds v € Hl(w) and w € Hl(w) but w ¢ Hz(w) and so we have to
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add (respectively subtract a singular function ¢ € Hl(w)) so that w e
Hz(w). We have now

For a<mn, o=

LVE |

W= Cru/aw(e) + smoother terms

For a > mw:

when - + 2 < — , then

2 o

W= Cr-"/a"zw(e) + smoother terms

when 2% < %42 | then

a a

W= Crzn/aw(e) + smoother terms

when 2n = -1—t+2 , then

o« o

2n/o
= [clwl(e) . czwz(e)]

Here r,0 are polar coordinates with the origin in the vertex of the domain

w and yY(0) is a smooth function. The case «a = is an exceptional angle

IR

and then w e Hs-e(w). € > 0, arbitrary.
The moments MiJ’ i,J=1,2, and the shear forces Q31’ i=1,2, are

given in the standard form
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2 2,
M11=D[ a;*" a;
axq 9xg ¢
2w . 8% )
My, =Dl v—75+ 2
ax, g
azw
(4.13) My, = D(l-v)[ _w ]
x4 3X2
a3w a3w
QB =0 —3* )
aX1 aX1aX2

=D 63w + 63w
Q32 2 3

ax, " 8%y axo

and hence

e
MiJ = Cp wi’J(e) + smoother terms

di = Crka_le(e) + smoother terms

As before the coefficients Al and AZ for the Kirchhoff model are given in
Table 4.5.

As was previously mentioned, the Kirchhoff model cannot distinguish
between hard and soft support. We show now that the Kirchhoff model should
be understood as an approximation of the hard support although sometimes it
is used for the soft support also (see below).

In Table 4.15 we show the error of the Kirchhoff model when compared

with the solutions of the (three-dimensional) plate problem of the square

uniformly loaded plate (v =0.3, d =0.01) for d=0.1 and d = 0.01.
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Table 4.15 Comparison of the energy of the Kirchhoff model.

172 172
g 1B - A 1Bt - A
erdS) A’
0.1 20.31% 39.56%
0.01 2.03% 11.87%

In Table 4.16 we show for d = 0.01 some comparison of data from the

Kirchhoff model and the three-dimensional solution.

Table 4.16 Comparison of shear forces and moments of the Kirchhoff and

three-dimensional model (d = 0.01).

Q3;(0.4, 0.5) | Q3(0.5-0, 0.5) | M2(0.5-0, 0.5)

hard support 0. 0. 0.0325
sof't support -9.72 -6.79 0.
Kirchhoff 0. 0. 0.0325

In the table we denoted
Q, 1(0.5-0, 0.5) = 1lim Q(x,, 0.5)
= xX1<0.5
Xy — 0.5

1)

Kirchhoff model also reproduces the paradox of the hard simple support i.e.

we have w,—W, a5 m—wo (see Theorem 4.2) and [6], [13] and [14].

Often in the Kirchhoff theory the reaction e.g. V_ = 032 (for x

2 2

0.5) 1is computed from the formula

- _0My5
(4.14) v, = [Qsz _ax,]
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see e.g. [18]. This derivation tries to simulate the reaction for the soft
simple support when using essentially the data from the hard support. The
main idea of the standard derivation of (4.14) is following: The virtual

work by the Kirchhoff theory can be written in the form

(4.15) B(w,v) = I qvdx - §andt. + § [Mng—: + Mntg—:]dt
W

Here we denoted by Mn the normal moment (for the simple support Mn = 0)

and M is the twist moment. By integration by parts in (4.15) we get

nt
_ _ 8Mne av
(4.16) B(w,v) = J'qux 39 [Qn + S ]vdt + ¢ M St
w r
Here ag:‘ is (generalized) derivative with respect to the tangent. We
remark that Mnt is discontinuous by (in the case of the square domain)
plecewise smooth and hence ag:t is a Dirac function (concentrated force) in

the vertex with the value of the "jump" in the moment. In the general case,

for example when a 2 g,

completely plausible to make a reasonable physical interpretation. The idea

then the "jump" is infinite and so it is not

in deriving (4.16) is to remove the virtual work by the twist moment but
still keep the same value of the total virtual work. In the case of the
square plate (a = 80°) the concentrated force computed through the twist
moment is relatively successful. We get here R = 0.0325 = M12(0.5, 0.5)
computed with the exact value R defined in Section 4.2 (R = 0.0290) and

the difference is about 10%.

4.7 Summary and conclusions.

The simple support is an idealization which does not necessarily
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describe the reality well. There are many possible formulations. We
mentioned only two possibllities, the hard and soft simple support. There

are others. For example we mention the notion of the supersoft support which

d/2
1s defined so that #(Q) = {u | I ua(xl,xz,xg)dx3 = 0, (xl,xz) e}

-d/2

instead u3(x1,x2,x3) =0 as was assumed. This will Influence the solution
by still varlous basic features discussed earlier for the soft support will
occur.

In the literature sometimes another formulation of the soft support is
used. Here H(Q) = {u |u(x1.x2.0) =0, (xl,xz) € I'}. Nevertheless this
formulation has no sense because for the 3-dimensional formulation the
quadratic functional G(u) will be not bounded from below and the solution
does not exist. (The essential reason is that under a concentrated load
(reaction) the displacement is infinite.)

Comparing the results we mentioned earlier we see:

(1) The Kirchhoff model gives completely unreliable results in the
neighborhood of the boundary (of size of the plate thickness)
although it gives acceptable results inside the domain. It
approximates much better the hard support than the soft support.

In the close neighborhood of the vertices the Kirchhoff model leads
to the singularities which are very different when compared with
the exact solution of the 3-dimensional problem.

(2) There is a significant difference between the solution for the hard
and soft simple support. This difference is limited to the
neighborhood of the boundary. The size of the neighborhood depends
on the smoothness of the boundary. The soft support does not have

certaln paradoxical properties which the hard one has.
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(3)

(4)

(5)

(8)

(7)

The RM model performs well. The shear factor H has a positiye
influence on the quality of the solution. Nevertheless, the
optimal value depends on the concrete setting and aims of
computation. In the given case the value H# = 0.87 1is close to
optimal.

The singularity of the (1,1,2) model is the same as of the
three-dimensional solution. The RM model leads to a slightly
different singularity.

The singular behavior of the RM model and the n-model is well
described by the theory which is valid in the area of approximately
% + 1 thickness. In the areas of larger distance the solution has
singular behavior well described by the Kirchhoff model.

The RM model (H# = 0.87) performs better than the model (1,1,2)
with # =1 (not with ¥ = 0.87) but the model (3,3,4) with ¥ =
1 outperforms RM.

The negative reaction of the solution of the three-dimensional

solution, RM model, and n-model differs approximately 10% from the

Kirchhoff negative concentrated reaction.

S. _The plate problem for various boundary conditions.

In Section 4 we addressed in detail the problem of the square simply

supported plate. In this section we will briefly analyze the essentials when

other boundary conditions are imposed especially with respect to the

differences to the case discussed earlier.
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5.1 The square clamped plate.

Let us consider the square plate with all build in boundary conditions.
Here #(Q) = {u|u=0 on S}. As before, we can similarly define RM
model, n-model, and Kirchhoff model.

Analogous to our previous analysis, we use the matrix B and parameter
# for the RM model. Then as d—0 the difference (measured in the
scaled energy norm) converges to zero. Hence the problem has quite analogous
properties as before.

For the numerical analysis we still consider as before the unit square

L
160°

the n-model we will use H = 1. In Tables 5.1 and 5.2 we report the moment

plate, d = v = 0.3 and for the RM model we will use X = 0.87, for

Mll(xl’xz) and M22(x1,x2) for x. =0, = 0.2777 respectively. The

1 X2
moment Mll(xl’O) i1s essentially identical (e < 0.1%) for all three models
considered. Hence no error is present. On the other hand, the error in
Méz(xl,o) for the RM model is large (30%), while for the (1,1,2) model it is
acceptable. Here we see a significani difference iIn comparisoa to the simple
support. Let us mention that the Kirchhoff plate model yields M11(0, 0.5) =
0.0513, M22(-0, 0.5) = 0.0153, 1i.e. the identical results as the RM model.

Moment M22 has a boundary layer which is not captured by the RM model.

(n)

As in Section 4.2 (see Table 4.4) we define 822

(xl.xz) so that

(n)(xl.xz)-(-g'sT"i).] - _ﬂ_é;(xl» X2) - M2 (x,, x2) |

e
22 IMBR(0.5, xa2) - Ms2’(0.5, x2)|

where the function Bzz(xl,xz) characterizes the boundary layer. We use in
the above formula Mgg(xl,xz) as natural smooth extension of Mgz(xl,xz)
from the inside where ";2 = MSM. In Table 5.3 we show a few values of

2
(1,1,2) 3 dim
Baa and B, .
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Table 5.1 The moments Mll(xl.o).

Mzz(xl.o) for different plate models.

Mll(xlno) Maz(X1,0)

X1 3 dim RM (1, 1.2) 3 dim RM CRH./' (1,1,2) 8112'/0
0. -0.0229 |-0.0229 |-0.0229 [-0.0229 |-0.0229 0. -0.0229 0.
0.2000 {-0.0157 |-0.0157 |-0.0157 }-0.0183 |-0.0163 0. -0.0163 0.
0. 4000 0.0164 0.0163 0.0164 0.0026 0.0027 0. 0.0026 0.
0. 4800 0.04,) 0.0470 0.0470 0.0141 0.0141 0. 0.0141 0.
0.4930 0.0483 0.0483 0.0483 0.0145 0.0144 0. 0.0144 0.
0.4990 0.0509 0.0509 0.0509 0.0168 0.0152 9.2 0.0170 1.4
0. 4985 0.0510 0.0510 0.0510 0.0176 0.0183 12.3 0.0179 2.
0.4999 0.0512 0.0512 0.0512 0. 0207 0.0153 25.3 0.0212 2.8
0.5000 0.0513 0.0513 0.0513 0.0220 0.0153 30.0 0.0220 0.

Table 5.2 The moments Mll(x1’0'2777)' M22(x1,0.2777) for different plate
models.
My1(x%4,0.2777) Mao(x4,0.2777)

X1 3 dim RM (1,1,2)] 3 dim RM ERru% (1,1,2) |eq12%
0. -0.0102 |-0.0102 |[-0.0102 [~0.0075 |-0.0075 -0.0078 0.
0.2000 [-0.0075 |-0.0075 |-0.0075 |-0.0058 {-0.0058 0. -0.0058 0.
0. 4000 0.0083 0.0083 0.0083 0.0015 0.0015 0. 0.001S 0.
0. 4900 0. 0256 0. 0256 0.0256 0.0077 |-0.0077 0. 0.0077 0.
0.4930 | 0.0263 | 0.0263 | 0.0263 [ 0.0079 | 0.0079 0. 0.0079 | 0.
0. 4980 0.0279 0.0279 0.0279 0.0092 0.0084 9.2 0.0093 1.4
0. 4995 0.0280 0.0280 0.0280 0.0096 0.0084 9.0 0.0098 2.0
0.4999 0.0281 0.0281 0.0281 0.0113 0.0084 25.3 0.0116 2.7
0. 5000 0.0281 0.0281 0.0281 0.0121 0.0084 30.1 0.0121 0.1




Table 5.3 The coefficient BZZ(XI’O) for the clamped plates.

3 dim (1,1,2)
X4 B22(x1,0)| B22(x1,0)
0.4990 15.43 13.86
0.4936 18.17 13.41
0. 4999 23.85 13.32
0.49993 24.13 13.31
0.49899 24.78 13.29

We see that the RM model does not have essentially any boundary layer for the
clamped boundary condition. This follows from [15], [16]. On the other hand

the model (1,1,2) and the plate problem shows a strong boundary layer. The

120

theoretical strength of the solution of (1,1,2) model is T-v

= 13.1
(see {19]) which is very close to the values shown in Table 5.3. The exact

solution shows still stronger boundary layer.

5.2 The plate with two o site sides clamped and two free.

in this section we will consider the case when the type of the boundary

condition 1is changing in the vertex. We will consider the unit square domain

¢

with the sldes Xy = $0.5 to be clamped and X,

boundary condition in the vertex A = (0.5, 0.5) changes the type from one

= 0.5 to be free. The

side to the other. Once more as d—0 the solution of the plate problem
(three-dimensional) as well as the n-model solutlon converges in (scaled)

energy norm to the Kirchhoff solution. See for example arguments in [2],

(6]. In the neighborhood of the vertex A the solution has singular




behavior. Denoting by r the distance from the vertex A we have

- 11‘1
Mij = Clr wiJ(e) + smoother terms

QSJ - czrhz—1¢d(e) + smoother terms

Where Al and Az are different for different models. Their values for our

case are given in Table 5.4.

The value Az =1 for the RM and (1,1,2) model means that for this

singularity the angle is exceptional and the shear force Q3J is bounded

in the neighborhood of A.

Table 5.4 The singularity coefficlients A A, for various models.

1’ 2
RM (1,1,2) K
3 dim

1.0687

Al 0.7583 0.7112 +
1 0.4386
: 0.687

AZ 1. 1. +
i 0.4386

Let us now consider the case as in the previous section, namely d =
0.01, v = 0.3. Figure 5.1 shows moment M22 on the line x1 = X5 of the
(three-dimensional) solution of the plate problem as a function of the

distance r from the point A.
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Figure 5.1 The moment M22(r) on the line Xy = X, for the

three-dimensional solution.

In Figure 5.1 we also show the theoretical singularity -0.289 as follows

2 the moment shows the character of the

from Table 5.4. For r > 10
Kirchhoff singularity where the singularity coefficient is complex.

In Figure 5.2 we show in more detall in log log scale the moment for the
RM model and three-dimenéional solution. We clearly see different growth as
follows from Table §5.4.

Figure 5.3 shows the behavior of the moments Mll’ and M22 and shear
force 032 from the RM model. We clearly see the growth in accordance
with Table 5. 4.

As we have seen in Figure 5.1, the moment M22 shows oscillatlons. To
understand this osclllation better we show in Figure 5.4, the moment M22 of
the RM model as a function of Lg r. In addition we show the function

Ccos(0.4386 lg F%) as approximations by the function having the Kirchhoff

type singularity. We see very good agreement.
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Figure 5.3 The moments Mll' M22 and the shear force 032 of the RM model.
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Figure 5.4 The moment M22 of RM solution and its approximation by

Kirchhoff type singularity.

Table 5.5 The moment M22 on x, =X, for various models.

X1 3aim [, 0 ol &% | ay] % lp o | %] (1120 ex
0. -0.0407 {-0.0407 | O. -0.0407 | O. -0.0407 |O. -0.0407 | 0.
0.135 -0.0317 {-0.0317 | O. -0.0317 | O. -0.0317 |O. -0.0317 | 0.
0.27 -0.0048 {-0.0048 | O. -0.0048 | O. -0.0048 |O. -0.0048 | O.
0.36 0.0239 | 0.0238 | O. 0.0238 | O. 0.0238 (0. 0.0238 | O.
0.45 0.0612 | 0.0612 | O. 0.0612 | O. 0.0612 (O. 0.0812 | O.
0.4635 0.0670 | 0.0670 | O. 0.0670 | O. 0.0670 |(O. 0.08670 | O.
0.4815 0.0722 | 0.0722 | O. 0.0722 | O. 0.0722 |0. 0.0722 | O.
0.4953 0.0624 | 0.0626 | 0.2 § 0.0627 | 0.4 | 0.0627 |0.4 | 0.0621 | 0.5
0. 4968 0.0575 | 0.0576 | 0.1 | 0.0578 | 0.5 § 0.0579 (0.7 || 0.0567 | 1.3
0. 4995 0.0630 | 0.0624 | 0.9 | 0.0632 | 0.4 §f 0.0640 (1.6 || 0.06805 | 4.0
0.49995 | 0.1173 | 0.1125 | 4.0 | 0.1140 | 2.7 § 0.1154 [1.6 || 0.1143 | 2.5
0.499995| 0.2252 | 0.1989 (11.7 | 0.2014 |10.5 § 0.2038 |9.5 | 0.2212 | 1.7
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In Table 5.5 we show some values of the moment Mzz for various models.

We see that for x % 0.5 the moments of the model (1,1,2) are better than

for the RM model. It relates directly to the different singular behavior of

the solution from the various models, as follows from Table 5.4.

5.3 Summary and conclusions.

Let us mentlion some conclusions which follow from cur analysis:

1)

2)

The boundary layer behavior of the RM model as described in [15]
[18] is very weak for the clamped boundary condition. Nevertheless
the strong boundary layer is present for the three-dimensional
formulation as well as (1,1,2) model. The RM model leads to a very
large error here when compared with the exact solution of the
three-dimensional problem. In contrast the model (1,1,2) gives
very acceptable results.

Changing the type of boundary conditions in the vertex usually
leads to different singular behavior of the solution of the RM
model and three-dimensional solution. The model (1,1,2) has the
same strength of the singularity as the three-dimensional solution.
Hence the RM model ylelds a large error in a very small
neighborhood of the vertex. The structure of the solution is
further complicated by the different strengths of boundary layer on

the sides with different boundary conditions.

6. Additiona emarks d conclusions.

The solution of the plate problem is very sensitive to boundary

conditions in the neighborhood of the boundary; Different models lead in
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general to very different boundary layer behavior and singularities in the
neighborhood of the vertices of the domain. We discussed only the behavior
of the moments and shear forces, i.e. of the resultants, the detalled
solution (stresses) has still more complicated structure (see e.g., [20]).

The singular and boundary layer behavior of course strongly influences
the accuracy of the numerical solution and requires very careful mesh design.

If the plate is relatively thin, say T%ﬁ of the diameter, the
sensitivity of the data inside of ® 1is much smaller than in the boundary
layer. Nevertheless it still can be large.

The design of the model has to be directly related to the aims of
computations. For example the Kirchhoff model typically could lead to
results which are very far from the exact three-dimensional solution if the
data at the boundary are of interest. (These data are reported in any book
about plate theory.) Inside of the domain the Kirchhoff data usually are
relative reliable but it depends on the type of boundary conditions and the
structure of the plate domain.

Reissner-Mindlin model performs well and captures well the boundary
layer behavior for some boundary conditions; nevertheless it falls completely
for some others such as clamped boundary conditions and could yield results
with error of 30%. The (1,1,2) model especially with a shear factor is much
more relevant and gives reliable data also when RM falls as in the case of
the clamped boundary condition. This model also has the same singular
behavior ag the solution of the (three-dimensional) plate model, while the RM
often has different singularity. The singularity of the solution of the
Kirchhoff model 18 completely different when compared with the singular

behavior of the solution of three-dimensional problem.

The selection of the plate model has to be related to the aims of




computation and the.best way ls to select it in an adaptive feature from a
family of hierarchical models; in different plate areas. In addition
a-posteriori error of the solution when compared with the exact three-
dimensional solution is desirable and can be made by comparing the results
from different hierarchically ordered models.

Finally we mention that the boundary layer influences the accuracy of
the finite element solution and has to be dealt with. (For example by an
adaptive solver. Furthermore, the finite element solution of the n-model

leads to the locking effects which are dealt with in various ways. In [21]

we have shown that the p-version of FEM for p 2 4 does not show practically

the locking effects.
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